lidar_driver_rs16.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. #include <thread>
  2. #include <iostream>
  3. #include <QUdpSocket>
  4. #include <QNetworkDatagram>
  5. #include <iostream>
  6. #include <QMutex>
  7. #include <QDateTime>
  8. #include "math.h"
  9. #include "Eigen/Dense"
  10. #include <pcl/point_cloud.h>
  11. #include <pcl/point_types.h>
  12. //#include <pcl/conversions.h>
  13. //"the format of " << limitPath << " is not correct, use default data"
  14. #include "modulecomm.h"
  15. #include "lidar_driver_rs16.h"
  16. #include "lidar_rs16_rawdata.h"
  17. Eigen::Matrix3d rotation_matrix;
  18. Eigen::Vector3d trans_matrix;
  19. #ifdef VV7_1
  20. int vv7;
  21. #endif
  22. #define Lidar_Pi 3.1415926535897932384626433832795
  23. #define Lidar32 (unsigned long)3405883584//192.168.1.203
  24. #define Lidar_roll_ang (90)*Lidar_Pi/180.0
  25. std::thread * g_prs16Thread;
  26. std::thread * g_prs16ProcThread;
  27. void * g_rs16_raw;
  28. void * g_lidar_pc;
  29. bool g_brs16_run = false;
  30. bool g_brs16_running = false;
  31. bool g_brs16_Proc_running = false;
  32. int g_seq = 0;
  33. extern char gstr_memname[256];
  34. extern char gstr_rollang[256];
  35. extern char gstr_inclinationang_yaxis[256]; //from y axis
  36. extern char gstr_inclinationang_xaxis[256]; //from x axis
  37. extern char gstr_hostip[256];
  38. extern char gstr_port[256];
  39. class rs16_Buf
  40. {
  41. private:
  42. char * mstrdata;
  43. int mnSize; //Data SizeUse
  44. QMutex mMutex;
  45. int mIndex;
  46. public:
  47. rs16_Buf()
  48. {
  49. mstrdata = new char[BK32_DATA_BUFSIZE];
  50. mIndex = 0;
  51. mnSize = 0;
  52. }
  53. ~rs16_Buf()
  54. {
  55. delete mstrdata;
  56. }
  57. void WriteData(const char * strdata,const int nSize)
  58. {
  59. mMutex.lock();
  60. memcpy(mstrdata,strdata,nSize);
  61. mnSize = nSize;
  62. mIndex++;
  63. mMutex.unlock();
  64. }
  65. int ReadData(char * strdata,const int nRead,int * pnIndex)
  66. {
  67. int nRtn = 0;
  68. if(mnSize <= 0)return 0;
  69. mMutex.lock();
  70. nRtn = mnSize;
  71. if(nRtn >nRead)
  72. {
  73. nRtn = nRead;
  74. std::cout<<"lidar_rs16 rs16_Buf ReadData data nRead = "<<nRead<<" is small"<<std::endl;
  75. }
  76. memcpy(strdata,mstrdata,nRtn);
  77. mnSize = 0;
  78. if(pnIndex != 0)*pnIndex = mIndex;
  79. mMutex.unlock();
  80. return nRtn;
  81. }
  82. };
  83. rs16_Buf * g_rs16_Buf;
  84. char * g_RawData_Buf;
  85. int gnRawPos = 0;
  86. float gAngle_Old = 0;
  87. float gAngle_Total = 0;
  88. unsigned short gold = 0;
  89. int gnPac = 0;
  90. #include <QTime>
  91. QTime gTime;
  92. void processrs16_Data(QByteArray ba)
  93. {
  94. gnPac++;
  95. unsigned short * pAng;
  96. float fAng;
  97. char * pdata;
  98. float fa,fb;
  99. pdata = ba.data();
  100. if(ba.length() == 1248)
  101. {
  102. std::cout<<"receive pac"<<std::endl;
  103. // pAng = (unsigned short *)(pdata+2+42);
  104. fa = (float)(*((unsigned char *)(pdata+2+42)));
  105. fb = (float)(*((unsigned char *)(pdata+2+43)));
  106. fAng = fa*256+fb;
  107. // fAng = *pAng;
  108. fAng = fAng*0.01;
  109. if(fabs(fAng-gAngle_Old)>300)
  110. {
  111. gAngle_Total = gAngle_Total + fabs(fabs(fAng-gAngle_Old)-360);
  112. }
  113. else
  114. {
  115. gAngle_Total = gAngle_Total + fabs(fabs(fAng-gAngle_Old));
  116. }
  117. gAngle_Old = fAng;
  118. if(gAngle_Total > 360)
  119. {
  120. g_rs16_Buf->WriteData(g_RawData_Buf,gnRawPos);
  121. // lidar_rs16_raw * p = new lidar_rs16_raw();
  122. // p->mnLen = gnRawPos;
  123. // memcpy(p->mstrdata,g_RawData_Buf,gnRawPos);
  124. // g_rs16_raw->writemsg((char *)p,sizeof(lidar_rs16_raw));
  125. // delete p;
  126. memcpy(g_RawData_Buf,pdata+42,1206);
  127. gnRawPos = 1206;
  128. // std::cout<<"index = "<<gnPac<<" time ="<<gTime.elapsed()<<" a cycle"<<std::endl;
  129. gAngle_Total = 0;
  130. }
  131. else
  132. {
  133. if((gnRawPos+1206)<= BK32_DATA_BUFSIZE)
  134. {
  135. memcpy(g_RawData_Buf+gnRawPos,pdata+42,1206);
  136. gnRawPos= gnRawPos+1206;
  137. }
  138. else
  139. {
  140. std::cout<<"lidar_rs16 processrs16_Data data is very big gnRawPos = "<<gnRawPos<<std::endl;
  141. }
  142. }
  143. // std::cout<<*pAng<<std::endl;
  144. // gold = *pAng;
  145. if(gnRawPos == 0)
  146. {
  147. gAngle_Total = 0;
  148. gAngle_Old = *pAng;
  149. gAngle_Old = gAngle_Old*0.01;
  150. memcpy(g_RawData_Buf,pdata,1206);
  151. gnRawPos = gnRawPos+1206;
  152. }
  153. }
  154. else
  155. {
  156. std::cout<<"lidar_rs16 processrs16_Data receive data packet len is not 1206 "<<std::endl;
  157. }
  158. }
  159. void rs16_Func(int n)
  160. {
  161. gTime.start();
  162. std::cout<<"Enter rs16_Func."<<std::endl;
  163. QUdpSocket * udpSocket = new QUdpSocket( );
  164. bool bbind = udpSocket->bind(QHostAddress(gstr_hostip), atoi(gstr_port));
  165. // bool bbind = udpSocket->bind(QHostAddress("192.168.50.62"), 6699);
  166. // udpSocket->bind(6699);
  167. // bool bbind = udpSocket->bind(QHostAddress::Any, 6699);
  168. // bool bbind = udpSocket->bind( 6699);
  169. int i = 0;
  170. while(g_brs16_run)
  171. {
  172. if(udpSocket->hasPendingDatagrams())
  173. {
  174. i++;std::cout<<"have data."<<i<<std::endl;
  175. QNetworkDatagram datagram = udpSocket->receiveDatagram();
  176. processrs16_Data(datagram.data());
  177. datagram.clear();
  178. }
  179. else
  180. {
  181. // std::cout<<"running."<<std::endl;
  182. std::this_thread::sleep_for(std::chrono::milliseconds(1));
  183. }
  184. }
  185. udpSocket->close();
  186. delete udpSocket;
  187. g_brs16_running = false;
  188. std::cout<<"rs16_Func Exit."<<std::endl;
  189. }
  190. void process_rs16obs(char * strdata,int nLen)
  191. {
  192. double frollang = atof(gstr_rollang) *M_PI/180.0;
  193. double finclinationang_xaxis = atof(gstr_inclinationang_xaxis)*M_PI/180.0;
  194. double finclinationang_yaxis = atof(gstr_inclinationang_yaxis)*M_PI/180.0;
  195. bool binclix = false;
  196. bool bincliy = false;
  197. if(finclinationang_xaxis != 0.0)binclix = true;
  198. if(finclinationang_yaxis != 0.0)bincliy = true;
  199. double cos_finclinationang_xaxis = cos(finclinationang_xaxis);
  200. double sin_finclinationang_xaxis = sin(finclinationang_xaxis);
  201. double cos_finclinationang_yaxis = cos(finclinationang_yaxis);
  202. double sin_finclinationang_yaxis = sin(finclinationang_yaxis);
  203. QDateTime dt = QDateTime::currentDateTime();
  204. pcl::PointCloud<pcl::PointXYZI>::Ptr point_cloud(
  205. new pcl::PointCloud<pcl::PointXYZI>());
  206. // point_cloud->header.stamp =
  207. // pcl_conversions::toPCL(sweep_data->header).stamp;
  208. point_cloud->header.frame_id = "velodyne";
  209. point_cloud->height = 1;
  210. point_cloud->header.stamp = dt.currentMSecsSinceEpoch();
  211. point_cloud->width = 0;
  212. point_cloud->header.seq =g_seq;
  213. g_seq++;
  214. unsigned char * pstr = (unsigned char *)strdata;
  215. // std::cout<<"enter obs."<<std::endl;
  216. float w = 0.0036;
  217. float Ang = 0;
  218. float Range = 0;
  219. int bag = 0;
  220. int Group = 0;
  221. int pointi = 0;
  222. float wt = 0;
  223. int wt1 = 0;
  224. Eigen::AngleAxisd r_z ( -0.0418, Eigen::Vector3d ( 0,0,1 ) ); //沿 Z 轴旋转 yaw +
  225. Eigen::AngleAxisd r_y ( -0.0242, Eigen::Vector3d ( 0,1,0 ) ); //沿 Y 轴旋转 roll +
  226. Eigen::AngleAxisd r_x ( -0.0137, Eigen::Vector3d ( 1,0,0 ) ); //沿 X 轴旋转 pitch -
  227. Eigen::Quaterniond q_zyx = r_z*r_y*r_x; //ZYX旋转顺序(绕旋转后的轴接着旋转)
  228. // 四元数-->>旋转矩阵
  229. rotation_matrix = q_zyx.toRotationMatrix();
  230. trans_matrix<<0, 0.85, 0.72;
  231. // int dx;
  232. // int dy;
  233. // float lidar_32_xdistance = 0.3; //32线激光雷达X轴补偿
  234. // float lidar_32_ydistance = -2.3; //32线激光雷达Y轴补偿
  235. // float H_BETA[32] = {
  236. // 1.4,-4.2,1.4,-1.4,1.4,-1.4,4.2,-1.4,
  237. // 1.4,-4.2,1.4,-1.4,4.2,-1.4,4.2,-1.4,
  238. // 1.4,-4.2,1.4,-4.2,4.2,-1.4,1.4,-1.4,
  239. // 1.4,-1.4,1.4,-4.2,4.2,-1.4,1.4,-1.4
  240. // };
  241. float V_theta[16] = {-15,-13,-11,-9,-7,-5,-3,-1,15,13,11,9,7,5,3,1};
  242. // float V_theta[16] = {-15,1,-13,3,-11,5,-9,7,-7,9,-5,11,-3,13,-1,15};
  243. // float T[32] = { 0, 3.125, 1.5625, 4.6875, 6.25, 9.375, 7.8125, 10.9375,
  244. // 12.5, 15.625, 14.0625, 17.1875, 18.75, 21.875, 20.3125, 23.4375,
  245. // 25, 28.125, 26.5625, 29.6875, 31.25, 34.375, 32.8125, 35.9375,
  246. // 37.5, 40.625, 39.0625, 42.1875, 43.75, 46.875, 45.3125, 48.4375};
  247. int buf1len = nLen/1206;
  248. unsigned short * pAng;
  249. double ang1,ang2;
  250. // pAng = ((pstr[2 + 0 * 100] *256) + pstr[ 3 + 0 * 100]) ;
  251. ang1 = ((pstr[2 + 0 * 100] *256) + pstr[ 3 + 0 * 100])/100.0;
  252. pAng = (unsigned short *)(strdata+2+1*100);
  253. ang2 = ((pstr[2 + 1 * 100] *256) + pstr[ 3 + 1 * 100])/100.0;
  254. double angdiff = ang2 - ang1;
  255. // std::cout<<"diff is "<<angdiff<<std::endl;
  256. // if(angdiff<0)angdiff = angdiff + 360.0;
  257. angdiff = angdiff/2.0;
  258. for (bag = 0; bag < buf1len; bag++)
  259. {
  260. for (Group = 0; Group <= 11; Group++)
  261. {
  262. wt1 = ((pstr[bag*1206 +2 + Group * 100] *256) + pstr[bag*1206 + 3 + Group * 100]) ;
  263. wt = wt1/ 100.0;
  264. for (pointi = 0; pointi <16; pointi++)
  265. {
  266. // Ang = (0 - wt - w * T[pointi] - H_BETA[pointi]+213) / 180.0 * Lidar_Pi;
  267. Ang = (0 - wt) / 180.0 * Lidar_Pi;
  268. Range = ((pstr[bag*1206 + Group * 100 + 4 + 3 * pointi] << 8) + pstr[bag*1206+Group * 100 + 5 + 3 * pointi]);
  269. unsigned char intensity = pstr[bag*1206 + Group * 100 + 6 + 3 * pointi];
  270. Range=Range* 5.0/1000.0;
  271. if(Range<150)
  272. {
  273. pcl::PointXYZI point;
  274. point.x = Range*cos(V_theta[pointi] / 180 * Lidar_Pi)*cos(Ang + frollang);
  275. point.y = Range*cos(V_theta[pointi] / 180 * Lidar_Pi)*sin(Ang + frollang);
  276. point.z = Range*sin(V_theta[pointi] / 180 * Lidar_Pi);
  277. if(point.z > 1.0) continue;
  278. if(binclix)
  279. {
  280. double y,z;
  281. y = point.y;
  282. z = point.z;
  283. point.y = y*cos_finclinationang_xaxis +z*sin_finclinationang_xaxis;
  284. point.z = z*cos_finclinationang_xaxis - y*sin_finclinationang_xaxis;
  285. }
  286. if(bincliy)
  287. {
  288. double z,x;
  289. z = point.z;
  290. x = point.x;
  291. point.z = z*cos_finclinationang_yaxis + x*sin_finclinationang_yaxis;
  292. point.x = x*cos_finclinationang_yaxis - z*sin_finclinationang_yaxis;
  293. }
  294. Eigen::Vector3d new_point, old_point;
  295. old_point<< point.x, point.y,point.z;
  296. new_point = rotation_matrix * (old_point) + trans_matrix;
  297. point.x = new_point[0];
  298. point.y = new_point[1];
  299. point.z = new_point[2];
  300. point.intensity = intensity;
  301. point_cloud->points.push_back(point);
  302. ++point_cloud->width;
  303. }
  304. }
  305. wt = wt + 0.18;
  306. for (pointi = 0; pointi < 16; pointi++)
  307. {
  308. Ang = (0 - wt) / 180.0 * Lidar_Pi;
  309. // Ang = Ang+angdiff;
  310. Range = ((pstr[bag*1206 + Group * 100 + 52 + 3 * pointi] << 8) + pstr[bag*1206+Group * 100 + 53 + 3 * pointi]);
  311. unsigned char intensity = pstr[bag*1206 + Group * 100 + 54 + 3 * pointi];
  312. Range=Range* 5.0/1000.0;
  313. if(Range<150)
  314. {
  315. pcl::PointXYZI point;
  316. point.x = Range*cos(V_theta[pointi] / 180 * Lidar_Pi)*cos(Ang + frollang);
  317. point.y = Range*cos(V_theta[pointi] / 180 * Lidar_Pi)*sin(Ang + frollang);
  318. point.z = Range*sin(V_theta[pointi] / 180 * Lidar_Pi);
  319. if(binclix)
  320. {
  321. double y,z;
  322. y = point.y;z = point.z;
  323. point.y = y*cos_finclinationang_xaxis +z*sin_finclinationang_xaxis;
  324. point.z = z*cos_finclinationang_xaxis - y*sin_finclinationang_xaxis;
  325. }
  326. if(bincliy)
  327. {
  328. double z,x;
  329. z = point.z;x = point.x;
  330. point.z = z*cos_finclinationang_yaxis + x*sin_finclinationang_yaxis;
  331. point.x = x*cos_finclinationang_yaxis - z*sin_finclinationang_yaxis;
  332. }
  333. Eigen::Vector3d new_point, old_point;
  334. old_point<< point.x, point.y,point.z;
  335. new_point = rotation_matrix * (old_point) + trans_matrix;
  336. point.x = new_point[0];
  337. point.y = new_point[1];
  338. point.z = new_point[2];
  339. point.intensity = intensity;
  340. point_cloud->points.push_back(point);
  341. ++point_cloud->width;
  342. }
  343. }
  344. }
  345. }
  346. char * strOut = new char[4+sizeof(point_cloud->header.frame_id.size()) + 4+8+point_cloud->width * sizeof(pcl::PointXYZI)];
  347. int * pHeadSize = (int *)strOut;
  348. *pHeadSize = 4 + point_cloud->header.frame_id.size()+4+8;
  349. memcpy(strOut+4,point_cloud->header.frame_id.c_str(),point_cloud->header.frame_id.size());
  350. pcl::uint32_t * pu32 = (pcl::uint32_t *)(strOut+4+sizeof(point_cloud->header.frame_id.size()));
  351. *pu32 = point_cloud->header.seq;
  352. memcpy(strOut+4+sizeof(point_cloud->header.frame_id.size()) + 4,&point_cloud->header.stamp,8);
  353. pcl::PointXYZI * p;
  354. p = (pcl::PointXYZI *)(strOut +4+sizeof(point_cloud->header.frame_id.size()) + 4+8 );
  355. memcpy(p,point_cloud->points.data(),point_cloud->width * sizeof(pcl::PointXYZI));
  356. iv::modulecomm::ModuleSendMsg(g_lidar_pc,strOut,4+sizeof(point_cloud->header.frame_id.size()) + 4+8+point_cloud->width * sizeof(pcl::PointXYZI));
  357. delete strOut;
  358. // std::cout<<"point cloud width = "<<point_cloud->width<<" size = "<<point_cloud->size()<<std::endl;
  359. }
  360. void rs16_Proc_Func(int n)
  361. {
  362. std::cout<<"Enter rs16_Proc_Func"<<std::endl;
  363. char * strdata = new char[BK32_DATA_BUFSIZE];
  364. int nIndex;
  365. int nRead;
  366. while(g_brs16_run)
  367. {
  368. if((nRead = g_rs16_Buf->ReadData(strdata,BK32_DATA_BUFSIZE,&nIndex))>0)
  369. {
  370. //process data.
  371. process_rs16obs(strdata,nRead);
  372. }
  373. else
  374. {
  375. // std::cout<<"running."<<std::endl;
  376. std::this_thread::sleep_for(std::chrono::milliseconds(1));
  377. }
  378. }
  379. g_brs16_Proc_running = false;
  380. std::cout<<"Exit rs16_Proc_Func"<<std::endl;
  381. }
  382. int LIDAR_DRIVER_RS16SHARED_EXPORT StartLidar_rs16()
  383. {
  384. std::cout<<"Now Start rs16 Listen."<<std::endl;
  385. g_RawData_Buf = new char[BK32_DATA_BUFSIZE];
  386. g_rs16_Buf = new rs16_Buf();
  387. g_brs16_run = true;
  388. g_brs16_running = true;
  389. g_brs16_Proc_running = true;
  390. g_rs16_raw = iv::modulecomm::RegisterSend("rs16_Raw",10*sizeof(lidar_rs16_raw),10);
  391. g_lidar_pc = iv::modulecomm::RegisterSend(gstr_memname,20000000,1);
  392. g_prs16Thread = new std::thread(rs16_Func,0);
  393. g_prs16ProcThread = new std::thread(rs16_Proc_Func,0);
  394. return 0;
  395. }
  396. void LIDAR_DRIVER_RS16SHARED_EXPORT StopLidar_rs16()
  397. {
  398. std::cout<<"Now Close rs16. "<<std::endl;
  399. g_brs16_run = false;
  400. g_prs16Thread->join();
  401. g_prs16ProcThread->join();
  402. delete g_prs16ProcThread;
  403. delete g_prs16Thread;
  404. delete g_rs16_Buf;
  405. delete g_RawData_Buf;
  406. }